This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Application of Two Hard Sphere Equations of State to Some Binary Non-Electrolyte Luquid Mixtures

D. Guillen^a; C. Polo^a; C. Gutierrez Losa^a

^a Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Zaragoza, Spain

To cite this Article Guillen, D., Polo, C. and Losa, C. Gutierrez(1978) 'Application of Two Hard Sphere Equations of State to Some Binary Non-Electrolyte Luquid Mixtures', Physics and Chemistry of Liquids, 8: 1, 37 — 44 **To link to this Article: DOI:** 10.1080/00319107808084740

URL: http://dx.doi.org/10.1080/00319107808084740

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Application of Two Hard Sphere Equations of State to Some Binary Non-Electrolyte Liquid Mixtures

D. GUILLEN, C. POLO, and C. GUTIERREZ LOSA

Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Spain

(Received July 7, 1977; in final form October 10, 1977)

Experimental excess volumes V^{ε} for 23 binary liquid mixtures consisting of polar (ethers, alcohols, amines or chloride hydrocarbons) + non polar components are compared with theoretical predictions of the equations of state of Snider and Herrington, and Guggenheim. The former predicts satisfactorily the sign of experimental V^{ε} values in most of the cases, while the latter gives systematically large negative values. The one-fluid and two-fluid relations do not differ generally in their results.

INTRODUCTION

The fluid model of hard spheres has been extensively applied to binary liquid mixtures, the components of which have approximately a globular shape. In this paper we have applied it to more complicated mixtures with components of different shape, size and polarity. We have used two equations of state:

I) That of Snider and Herrington,¹ which has been obtained from the hard sphere equation of state of Reiss, Frisch and Lebowitz² modified by Longuet-Higgins and Widom.³ This transformed equation of state has been successfully applied by Marsh⁴ to mixtures of large globular molecules and by Snider and Herrington¹ to mixtures composed of small non-polar molecules. Subach and Kong⁵ have also used this equation with mixtures of non-polar and significantly different molecules in size and shape.

II) That of Guggenheim⁶ together with the van der Waals "one-fluid" and "two fluids" relations first used by Leland, Rowlinson, and Sather.⁷ Leland *et al.*⁸ and Marsh *et al.*⁹ have also used the van der Waals "two-fluids"

relations, and obtained substantially better agreement with the experimental results for simple systems than they did with the corresponding one-fluid theories. Marsh⁴ has applied this prescription to mixtures of large globular molecules.

EQUATIONS AND CALCULATIONS

I) The modified equation of state used by Snider and Herrington is:

$$\frac{P}{nkT} = \phi(Y) - \frac{an}{kT} \tag{1}$$

where P is the pressure, n is the number density, k is Boltzmann's constant, T is the thermodynamic temperature, a is the van der Waals parameter, $\phi(Y)$ is

$$\phi(Y) = \frac{1 + Y + Y^2}{(1 - Y)^3}$$
(2)

where

$$Y = \frac{\pi r^3 n}{6} \tag{3}$$

and r is the hard sphere diameter. The function of density $\phi(Y)$ is the pressure of a hard sphere assembly at the same temperature and density as the model fluid.

The equation of state for binary mixtures is based on a generalization of $\phi(Y)$ to a binary mixture and on the configurational internal energy for mixing¹⁰

$$\frac{P}{n_m kT} = \phi_m(Y_m, x) - \frac{a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2}{kT} n_m \tag{4}$$

where a_{11} and a_{22} are the pure component parameters and a_{12} is the mixing parameters, n_m is the over-all density of the mixture, x_1 and x_2 are the respective mole fractions $\phi_m(Y_m, x)$ is¹

$$\phi_{m} = \frac{1 + Y_{m} + Y_{m}^{2}}{(1 - Y_{m})^{2}} - \frac{3Y_{m}}{(1 - Y_{m})^{3}} \cdot \frac{x_{1}x_{2}(r_{1} - r_{2})^{2}}{x_{1}r_{1}^{3} + x_{2}r_{2}^{3}} \left(r_{1} + r_{2} + Y_{m}r_{1}r_{2}\frac{x_{1}r_{1}^{2} + x_{2}r_{2}^{2}}{x_{1}r_{1}^{3} + x_{2}r_{2}^{3}}\right)$$
(5)

and

$$Y_{m} = \frac{(x_{1}r_{1}^{3} + x_{2}r_{2}^{3})}{6}n_{m}$$
(6)

The respective equations for the excess functions are⁴

$$\frac{H^E}{NkT} = \sum_{i=1,2} x_i \left[\left(\frac{2P_m}{n_m kT} - \phi_m(Y_m, x) \right) - \left(\frac{2P_i}{n_i kT} - \phi(Y_i) \right) \right]$$
(7)

$$\frac{V^{E}}{N} = \frac{\pi}{6} \sum_{i=1,2} x_{i} r_{i}^{3} (Y_{m}^{-1} - Y_{i}^{-1})$$
(8)

The Y and r parameters of Eq. (1) can be determined from heat of vaporization data at the boiling-point by equations⁴

$$\frac{H_v}{NkT} = -\ln\frac{P}{nkT} - \ln(1-Y) + \frac{3}{2}Y\frac{2-Y}{(1-Y)^2} \qquad (\text{Method A}) \quad (9)$$

$$\frac{H_{\nu}}{NkT} = \phi(Y) + 1 \qquad \text{(Method B)} \tag{10}$$

In Table I we give the necessary data for pure components at the boiling point used in the calculations.

With the known Y_s we have obtained firstly $\phi(Y)$ by Eq. (2), and then the van der Waals parameter a by Eq. (1).

V/m³ mol⁻¹ 10⁻⁶ $\Delta H_v/J \mod -1$ Component T/KP/atm 30765 benzene⁵ 96.09 353.35 ł tetrachloromethane5 30018 103.74 349.81 1 33037 c-hexane⁵ 108.75 298.15 0.128 2-Cl 2-Methyl propane 32000ª 112.32 323.55 1 2651411 97.41^b 2-Cl propane 308.00 1 2-Cl butane 30900° 115.09 351.60 1 3330011 138.81 1-Cl pentane 380.90 1 n-hexane⁵ 29481 136.46 340.00 0.95 2708711 72.4^b furan 304.30 l 3577311 86.5^b 374.30 1-4 dioxane 1 tetrahydrofuran 29648° 83.7^b 337.00 1 31748° 100.90^b tetrahydropyran 361.00 Ł 3530013 342.44^b methanol 337.8 1 4048013 80.77^b 370.4 propanol 1 3966413 103.45 terbutanol 355.6 1 29526^d 102.84^b 317.6 terbutylamine 1 32843* 113.98 diethylamine 329.1 1 4063913 101.25 457.6 1 aniline

TABLE I

Boiling-points data for the pure components

* Calculated from dT/dP data (Ref. 11).

^b Calculated by Benson's method (Ref. 12).

^c Calculated by Pitzer's method (Ref. 12).

^d Calculated by Antoine's equation (Ref. 14).

Using the r and a parameters previously calculated, the molar volumes at the working temperature are obtained from Eq. (1), leaving aside the term in pressure. After this we obtain $\phi(Y)$ by means of the same Eq. (1).

In Table II are set out the heat of mixing data H^E for different mixtures of polar + non-polar components. $\phi(Y)$ and H^E are substituted in Eq. (7), in order to calculate ϕ_m at mole fraction x = 0.5 (leaving aside the term in P).

By replacing ϕ_m in Eq. (5) and solving this equation for Y_m we can evaluate V^E by Eq. (8). In Table III the calculated V^E values are compared with our experimental ones^{9,10}

II) For the Guggenheim equation of state

$$\phi(Y) = (1 - Y)^{-4}, \tag{11}$$

where

$$Y = b/4V$$

The parameter b of the pure substance is evaluated by solving the equation:

$$\phi(Y)^{c} - V^{c} \left[\frac{\partial \phi(Y)}{\partial V} \right]_{T}^{c} - (V^{c})^{2} \left[\frac{\partial^{2} \phi(Y)}{V^{2}} \right]_{T}^{c} = 0$$
(12)

TABLE II

H۴	data	at	mole	fraction x	=	0.5	
		_					-

Mixture	T/K	$H^{E}/J \mod^{-1}$
2-Cl 2-Me propane + benzene ¹⁵	303.15	127.8
2-Cl 2-Me propane + tetrachloromethane15	303.15	52.9
2-Cl 2-Me propane + c-hexane ¹⁵	303.15	488
2-Cl propane + c-hexane ¹⁵	303.15	608
2-Cl butane + c-hexane ¹⁵	303.15	529
1-Cl pentane + c-hexane ¹⁵	303.15	499
furan + tetrachloromethane ¹⁶	303.15	316
1-4dioxane + tetrachloromethane ¹⁶	303.15	-237
tetrahydrofuran + tetrackloromethane ¹⁶	303.15	- 722
tetrahydropyran + tetrachloromethane ¹⁶	303.15	-715
furan + n-hexane ¹⁶	303.15	1150
1-4dioxane + n-hexane ¹⁶	303.15	1594
tetrahydrofuran + n-hexane ¹⁶	303.15	738
tetrahydropyran + n-hexane ¹⁶	303.15	561
methanol + tetrachloromethane ¹⁷	298.15	207
propanol + tetrachloromethane ¹⁷	298.15	321
terbutanol + tetrachloromethane ¹⁸	303.15	941
terbutilamine + tetrachloromethane ²¹	303.15	59
aniline + tetrachioromethane ¹⁹	298.15	280
terbutanol + benzene ¹⁸	303.15	1572
terbutylamine + benzene ²¹	303.15	540
aniline + benzene ¹⁹	298.15	172
diethylamine + benzene ²⁰	298.15	332

and the parameter a is given by

$$a = \frac{RT^{c}V^{c}}{2} \left\{ \phi(Y)^{c} - V^{c} \left[\frac{\partial \phi(Y)}{\partial V} \right]_{T}^{c} \right\}$$
(13)

where T^{c} and V^{c} are respectively the critical temperature and critical volume.

The interaction parameters a_{AB} and b_{AB} are obtained from the Berthelot and Lorenz combining rules.

$$\frac{a_{AB}}{b_{AB}} = \left[\frac{a_A}{b_A}\frac{a_B}{b_B}\right]^{1/2} \mathscr{E}$$
(14)

$$b_{AB} = \left[\frac{1}{2}(b_A^{1/3} + b_B^{1/3})\right]^3 \tag{15}$$

The deviations from these rules are expressed in terms of &.

The parameters a(x) and b(x), characterizing the equivalent substances for the composition x, and the analogous two-fluids parameters $a_1(x)$, $a_2(x)$, $b_1(x)$ and $b_2(x)$, are defined by the corresponding van der Waals approximation:

$b(x) = x^2 b_A + 2x(1-x)b_{AB} + (1-x)^2 b_B$	(1F)
$a(x) = x^{2}a_{A} + 2x(1-x)a_{AB} + (1-x)^{2}a_{B}$	(1F)

$$a(x) = x^2 a_A + 2x(1-x)a_{AB} + (1-x)^2 a_B \qquad (1F)$$

$$a_1(x) = xa_A + (1 - x)a_{AB}$$
 (2F)

$$a_2(x) = (1 - x)a_B + xa_{AB}$$
 (2F)

$$b_1(x) = xb_A + (1 - x)b_{AB}$$
 (2F)

$$b_2(x) = (1 - x)b_B + xb_{AB}$$
 (2F)

The molar volume of the mixture is given by the appropriate roots of the equation of state.

The respective equations for the excess functions are:

(1F)
$$H^{E} = -\frac{a(x)}{V} + x \frac{a_{A}}{V_{A}} + (1-x)\frac{a_{B}}{V_{B}}$$
 (16)

(1F)
$$V^E = V_m - xV_A - (1 - x)V_B$$
 (17)

 V_m is the molar volume of the mixture.

(2F)
$$H^{E} = x \left[-\frac{a_{1}}{V_{1}} + \frac{a_{A}}{V_{A}} \right] + (1 - x) - \frac{a_{2}}{V_{2}} + \frac{a_{B}}{V_{B}}$$
 (18)

(2F)
$$V^{E} = x(V_{1} - V_{A}) + (1 - x)(V_{2} - V_{B})$$
 (19)

Subscripts 1 and 2 refer to the equivalent fluids 1 and 2.

In our calculations the experimental values for H^E were used for evaluation of 8.

Downloaded At: 08:57 28 January 2011

TABLE III

Calculated and experimental P^{ε} values (x = 0.5)

	Snider and	Herrington	Gugge	nheim	
Mixture	$V_{c_{a_{i}}}^{E}(A)$	V ^E (B)	V ⁶ _{cal} (1F)	$V_{\rm cal}^{\rm E}(2{\rm F})$	$V_{\rm enc}^{\rm E}/10^{-9} {\rm m}^3 {\rm mol}^{-1}$
2-Cl 2-Methyl propane + benzene	- 33	83	- 8120	-8110	- 254 ¹⁵
2-Cl 2-Methyl propane + tetrachloromethane	- 244	65	-8750	- 8740	- 30415
2-CI 2-Methyl propane + c-hexane	26	578	- 7890	- 7900	11315
2-Cl propane + c-hexane	354	693	- 4660	- 4630	28615
2-Cl butane + c-hexane	357	623	- 5380	5380	39115
1-Ci pentane + c-hexane	492	601	- 5860	- 5650	456 ¹⁵
furan + tetrachloromethane	232	359	- 5600	- 5030	49816
1-4-dioxane + tetrachloromethane	-871	- 664	- 8680	- 9060	- 29016
tetrahydrofuran + tetrachloromethane	- 501	- 705	- 6820	- 8080	- 560 ¹⁶
tetrahydropyran + tetrachloromethane	- 517	- 720	-8610	- 9890	- 510 ¹⁶
furan + n-hexane	884	1323	- 5830	- 2920	102016
1-4-dioxane + n-hexane	- 499	119	- 9270	- 5100	47016
tetrahydrofuran + n-hexane	410	489	- 7210	- 5370	16016
tetrahydropyran + n-hexane	125	131	- 8670	- 7090	90 ₁ 6
methanol + tetrachloromethane	- 1890	-1310	5890	- 5850	-4122
propanol + tetrachloromethane	- 2080	- 700	- 5700	- 5210	-100^{22}
terbutanol + tetrachloromethane	- 1440	-410	-4730	- 2700	62323
aniline + tetrachloromethane	- 580	- 740	- 9740	- 9070	- 320 ¹⁹
terbutanol + benzenie	- 760	1080	- 4050	- 730	67223
terbutilamine + benzene	340	440	- 7500	-6110	31 ²¹
aniline + benzene	- 360	- 500	- 8800	- 8380	- 240 ¹⁹
diethylamine + benzene	70	280	- 4530	- 3730	3120
terbutylamine + tetrachloromethane	0	30	- 8010	- 7720	-313 ²¹

TABLE IV

Ľ.
40
-
æ
ت
-
<u> </u>
_
- 5
v
•
- 55
U
-
-
-
0
E
-
_
-1
×
<u> </u>
드
•==
- CC
ت
ō
~
0
v
۰Ö
õ
<u> </u>
4
-
_
-
~
~
-
- A
=
-
a
-
ъ.
-
0
•
\$
đ
\sim
0
ñ,
ē
ē
ğ
ē ē
ē ġ
Ē Ed S
Ē
n Eq. (2
m Eq. (2
om Eq. (2
rom Eq. (2
from Eq. (2
from Eq. (2
l from Eq. (2
d from Eq. (2
ed from Eq. (2
ited from Eq. (2)
ated from Eq. (2)
lated from Eq. (2)
ulated from Eq. (2)
culated from Eq. (2)
lculated from Eq. (2)
alculated from Eq. (2
calculated from Eq. (2)
calculated from Eq. (2)
s calculated from Eq. (2)
ss calculated from Eq. (2)
ies calculated from Eq. (2)
ues calculated from Eq. (2)
lues calculated from Eq. (2)
alues calculated from Eq. (2)
values calculated from Eq. (2)
values calculated from Eq. (2)
2 values calculated from Eq. (2)
12 values calculated from Eq. (2)
21,2 values calculated from Eq. (2)

	(Method A) $a_{12}/$.	/ m ³ mol ⁻²	(Method B) a12/	(J m ³ mol ⁻²
Mixture	Using Eq. (20)	Using H ^E	Using Eq. (20)	Using H ^E
2 Cl, 2-Me propane + benzene	4.48	4.44	2.95	2.94
2 Cl, 2 Me propane + tetrachloromethane	4.58	4.57	3.03	3.02
2 Cl, 2 Me propane + cyclohexane	5.06	5.00	3.29	3.21
2 Cl propane + cyclohexane	3.75	3.65	2.79	2.70
2 Cl butane + cyclohexane	4.51	4.42	3.27	3.19
I CI pentane + cyclohexane	5.20	5.11	3.73	3.65
furan + tetrachloromethane	2.94	2.90	2.25	2.21
I,4-dioxane + tetrachloromethane	3.94	4.04	2.82	2.88
tetrahydrofuran + tetrachloromethane	3.27	3.36	2.52	2.61
tetrahydropyran + tetrachloromethane	3.79	3.90	2.86	2.95
furan + n-hexane	3.55	3.38	2.59	2.53
I,4 dioxane + n-hexane	4.72	4.64	3.23	3.09
tetrahydrofuran + n-hexane	3.93	3.83	2.89	2.81
tetrahydropyran + n-hexane	4.54	4.48	3.26	3.20
methanol + tetrachloromethane	2.85	3.07	2.02	2.12
propanol + tetrachloromethane	4.55	4.75	2.92	2.93
terbutanol + tetrachloromethane	5.34	5.33	3.27	3.14
terbutilamine + tetrachloromethane	3.97	3.95	2.79	2.78
aniline + tetrachloromethane	4.18	4.20	3.24	3.24
terbutanol + benzene	5.22	5.06	3,19	2.97
terbutylamine + benzene	3.87	3.79	2.72	2.65
aniline + benzene	4.09	4.09	3.16	3.16
diethylamine + benzene	4.56	4.49	3.02	2.97

43

DISCUSSION

As can be seen from Table III, the applied equation of Snider and Herrington predicts correctly the sign of experimental values of V^E in all the cases, except in that of 1-4-dioxane + n-hexane with Method A and 2-Cl 2-Methyl propane + benzene, and + tetrachloromethane with Method B. On the whole, Method A seems to have better predictive properties than Method B. The best agreement is obtained with systems in which tetrachloromethane and cyclohexane are involved.

It is interesting to compare the a_{12} values obtained from the experimental $H^{\varepsilon}s$ with those derived from the combining rule:

$$a_{12} = \left[\frac{a_{11}a_{22}}{r_1^3 r_2^3}\right]^{1/2} \left[\frac{r_1 + r_2}{2}\right]^3$$
(20)

In Table IV both sets of values are set out, and, as can be observed, the agreement is generally good, what constitutes a further support of the model.

On the other hand, the excess volumes predicted by Guggenheim's equation have systematically large negative values, which never agree with the experimental ones, even in sign in most of the cases. The one-fluid and twofluids relations do not differ generally in their results.

References

- 1. N. S. Snider and T. M. Herrington, J. Chem. Phys., 47, 2249 (1967).
- 2. H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys., 31, 369 (1959).
- 3. H. C. Longuet-Higgins and B. Widom, J. Molc. Phys., 8, 549 (1964).
- 4. K. N. Marsh, J. Chem. Thermodynamics, 3, 335 (1971).
- 5. D. J. Subach and C. L. Kong, Phys. Chem. Liq., 3, 145-155 (1974).
- 6. E. A. Guggenheim, Mol. Phys., 9, 199 (1965).
- 7. T. W. Leland, J. S. Rowlinson, and G. A. Sather, Trans. Faraday Soc., 64, 1447 (1968).
- T. W. Leland, J. S. Rowlinson, G. A. Sather, and I. D. Watson, *Trans. Faraday Soc.*, 65, 2034 (1969).
- 9. K. N. Marsh, M. L. McGlashan, and C. Warr, Trans. Faraday Soc., 66, 2453 (1970).
- 10. J. L. Lebowitz, Phys. Rev. A, 133, 895 (1964).
- 11. J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds (Elsevier, Amsterdam, 1950, 1965).
- 12. Reid and Sherwood, Propiedades de los Gases y Liquidos (U.T.E.H.A. Mexico 1968).
- 13. Weissberger, Organic Solvents (Interscience, 1955).
- 14. A. G. Osborn and D. R. Douslin, J. Chem. Engineering Data, 13, 534 (1968).
- 15. C. Polo, S. Otin, C. Gutierrez, and M. Gracia, Internacional DATA Series A (1976).
- 16. M. D. Guillén, Doctoral Thesis, University of Zaragoza, 1977.
- 17. A. Otterstedt and R. Missen, Trans. Faraday Soc., 53, 879 (1962).
- 18. S. Otin, M. Gracia, and C. Gutierrez, J. Chim. Phys., 9, 1227 (1973).
- 19. D. Deshpande and M. Pandya, Trans. Faraday Soc., 61, 1858 (1965).
- 20. M. Letcher and J. W. Bayles, J. Chem. Engineering Data, 16, 266 (1971).
- 21. S. Otin, M. Gracia, and C. Gutierrez, J. Chim. Phys., 9, 1232 (1973).
- 22. G. Paraskevopoulos and R. Missen, Trans. Faraday Soc., 58, 869 (1962).
- 23. S. Otin, M. Gracia, and C. Gutiérrez, Rev. Acad. Ciencias Zaragoza, XXVII, 2, 259 (1972).